A multi-material flow solver for high speed compressible flows

نویسندگان

  • A. Kapahi
  • C.-T. Hsiao
  • G. L. Chahine
چکیده

This paper describes a three-dimensional Eulerian-Lagrangian method for the modeling and simulation of high-speed multi-material dynamics. The equations for conservation of mass, momentum, and energy are solved on a fixed Cartesian grid using a fully conservative higher order MUSCL scheme. The dilatational response of each material is handled using a suitable equation of state. The embedded interfaces are handled using a mixed-cell approach. This approach uses an Eulerian treatment for the computational cells away from the interface and a Lagrangian treatment for the cells including interface elements, resulting in a fully conservative method for multi-material interactions. The method has shown capability to resolve and capture non-linear waves such as shock waves, rarefaction waves, and contact discontinuities in complex geometries. This work mainly emphasizes the handling of shockwave interaction with bubbles, bubbly media, and multi-fluid interfaces in a compressible flow framework. Several numerical examples are shown to demonstrate the validity and robustness of the method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A preconditioned solver for sharp resolution of multiphase flows at all Mach numbers

A preconditioned five-equation two-phase model coupled with an interface sharpening technique is introduced for simulation of a wide range of multiphase flows with both high and low Mach regimes. Harten-Lax-van Leer-Contact (HLLC) Riemann solver is implemented for solving the discretized equations while tangent of hyperbola for interface capturing (THINC) interface sharpening method is applied ...

متن کامل

Numerical Investigation on Compressible Flow Characteristics in Axial Compressors Using a Multi Block Finite Volume Scheme

An unsteady two-dimensional numerical investigation was performed on the viscous flow passing through a multi-blade cascade. A Cartesian finite-volume approach was employed and it was linked to Van-Leer's and Roe's flux splitting schemes to evaluate inviscid flux terms. To prevent the oscillatory behavior of numerical results and to increase the accuracy, Monotonic Upstream Scheme for Conservat...

متن کامل

Positivity-preserving Lagrangian scheme for multi-material compressible flow

Robustness of numerical methods has attracted an increasing interest in the community of computational fluid dynamics. One mathematical aspect of robustness for numerical methods is the positivity-preserving property. At high Mach numbers or for flows near vacuum, solving the conservative Euler equations may generate negative density or internal energy numerically, which may lead to nonlinear i...

متن کامل

Mixed Large-Eddy Simulation Model for Turbulent Flows across Tube Bundles Using Parallel Coupled Multiblock NS Solver

In this study, turbulent flow around a tube bundle in non-orthogonal grid is simulated using the Large Eddy Simulation (LES) technique and parallelization of fully coupled Navier – Stokes (NS) equations. To model the small eddies, the Smagorinsky and a mixed model was used. This model represents the effect of dissipation and the grid-scale and subgrid-scale interactions. The fully coupled NS eq...

متن کامل

AIAA 2003-3979 Algorithmic Enhancements to the VULCAN Navier-Stokes Solver

VULCAN (Viscous Upwind aLgorithm for Complex flow ANalysis) is a cell centered, finite volume code used to solve high speed flows related to hypersonic vehicles. Two algorithms are presented for expanding the range of applications of the current Navier-Stokes solver implemented in VULCAN. The first addition is a highly implicit approach that uses subiterations to enhance block to block connecti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015